Evaluating diagnostic performance of SARS-CoV-2 AG-RDTs based on extensive data from field use *a data science approach*

Tomáš Kliegr¹, Jiří Jarkovský², Helena Jiřincová³, Jaroslav Kuchař⁴, Tomáš Karel⁵, Ruth Tachezy⁶

¹ Department of Information and Knowledge Engineering, Faculty of Informatics and Statistics, VSE Praha, CZ
 ² Institute of Health Information and Statistics of the Czech Republic, CZ
 ³ National Reference Laboratory for Influenza and Respiratory Viruses, National Institute of Public Health, CZ
 ⁴ Department of Software Engineering, Faculty of Information Technology, Czech Technical University in Prague, CZ
 ⁵ Department of Statistics and Probability, Faculty of Informatics and Statistics, VSE Praha, CZ
 ⁶ Department of Genetics and Microbiology, Faculty of Science-BIOCEV, Charles University, CZ

ECDC/WHO Euro joint lab network meeting

Goals

- 1. Determine sensitivity and specificity for most commonly used tests
 - 38 tests with at least 300 PCR- and 100 PCR+
- 2. Are AG-RDTs on approved lists better?
 - WHO Emergency Used Listing (2020, 22)
 - EU Common List of antigen tests
 - Paul Ehrlich Inst. evaluation (Germany)
 - UK Health Security Agency (DHSC/PHE evaluation)
- 3. Determine sensitivity and specificity for subgroups:
 - Most commonly used tests (38)
 - Sample type (saliva, nasal, nasoph.)
 - Age groups
 - Symptoms
 - According to SARS-CoV-2 incidence in region
 - Vaccinated/unvaccinated

Outline

Motivation

 Verification of the clinical performance of AG-RDT used for population screening in the Czech republic

Methodology and data sources

- Records of state-wide field testing for COVID-19 in the Czech Republic
- Data enrichment

Results

Conclusions and recommendations

- Test sensitivity was lower for children and adolescents, vaccinated individuals, saliva tests, tests conducted for preventive reasons and in periods of low SARS-CoV-2 incidence
- Test approved on the WHO/ECDC/PHE lists performed better

Motivation

Motivation – divergence between declared diagnostic performance

Initial approach for selecting AG-RDTs for public use relied on sensitivities and specificities declared by manufacturers.

19-7日1-15-110 165 (APAD-11) Antigan Tout ## Colored Gold) Ray No: MA

12.1 Clinical performance

		1			
Metho	Dd	Positive	Negative	Total	
COVID-19 antigen	Positive 167 Negative 0		1	168	
Test kit			229	229	
Tota	il	167	230	397	
Sensiti	vity	>99.99%	95% confidence interval	97.75%~100%	
Specificity Accuracy		99.57%	95% confidence interval	97.58%~99.92%	
		99.75%	95% confidence interval	98.59%~99.96%	

... and independent studies

 Independent evaluation of a version of COVID-19 test from the same manufacturer has shown a very different result
 Paul-Ehrlich-Institut 🛸

Hersteller / Manufacturer	Testname / Test name	Zielantigen / target antigen	Cq ≤25	Cq 25-30	Cq ≥30	Gesamt- Sensitvität / total sensitivity
Marwellins R enh Ca	Hommer Antige Cons Re-uniter Subrel Original II re- Iter Cor-u. vs. EANLAS 2 Antino Rap on Element 10 Vis	N+S	65,0%	5,0%	0,0%	28,0%
Marauthing Brigales Illation others Co	C D- stills Co r/la Cassi N 7%d	N	0,0%	0,0%	0,0%	0,0%

Sensitivität / Sensitivity

 Average AG-RDT sensitivity according to a metastudy of 112,000 samples was 71.2% (Brümmer et al, 2021)

Source: Results of the Comparative Evaluation of the Sensitivity of SARS-CoV-2 Antigen Rapid Tests, Paul Ehrlich Institut, 30 May 2022

Excerpt from manufacturer clinical study of the CE-certified AG-RDT

Testing Date		20	3.11	
Testing Method	PCR results Positive Negative			
COVID-19 antigen Test kit			Total	Remarks
Positive	0	1	1	
Negative	0	196	196	Annex 4
Total	0	197	197	

Negative cases evaluated in China on PCR-negative cases

Testing Date		20	21.03.04~2021.0	1.03.06		
Testing Method	PCR	results				
COVID-19 antigen Test kit	Positive	Negative	Total	Remarks		
Positive	80	0	80			
Negative	0	0	0	Annex 1		
Total	80	0	80			

Positive cases evaluated in Equador on PCR-positive cases

AG-RDT evaluations with existing methodologies

Type of AG-RDT evaluation								
Clinical study by AG- RDT manufacturer	Independent in-vitro study	Independent prospective clinical field study						
	Example AG-RDT approval lists usin	g the evaluation type						
CE mark	EU Common List Category B	EU Common List Category A						
	Limitations							
 Not independent Not periodic Mutually incomparable Sometimes problematic access to COVID-19 positive cases (e.g., Chinese manufacturers) 	 Not periodic Issue with batches Results may not match with clinical evaluations (e.g., mutation in frozen sample pools no longer in circulation) Limited sample size 	Incomparable: individual AG-RDTs evaluated on different populations across involved countries Not periodic: does not capture differences among batches or versions of tests distributed in different countries Subpopulations not evaluated: important target subgroups such as children or preventive testing may behave differently						

Our methodology and data sources

Our methodology: Pairing of AG-RDTs and PCRs registered as part of regular state-mandated AG-RDT and PCR testing

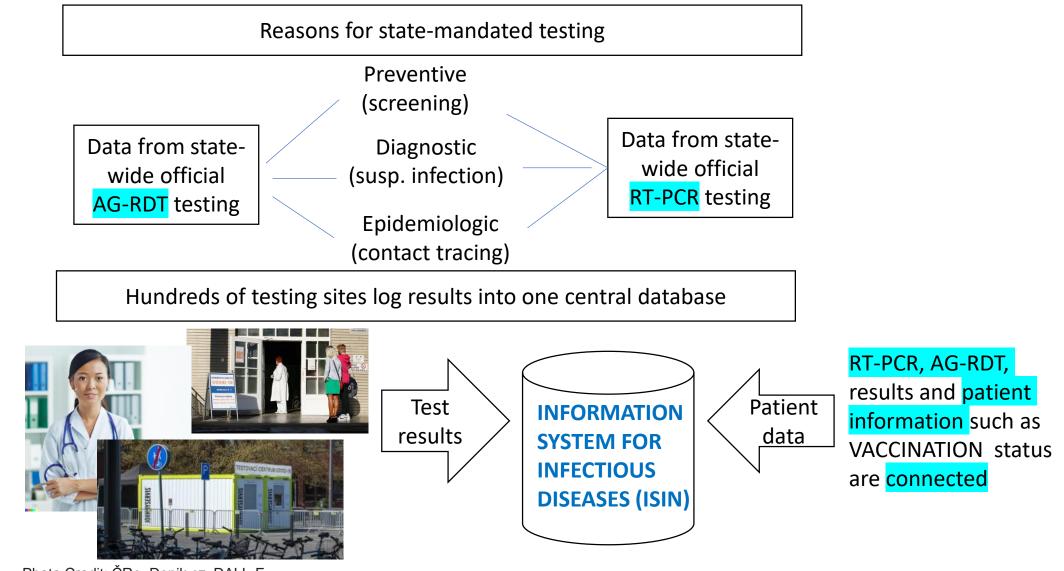


Photo Credit: ČRo, Denik.cz, DALL-E

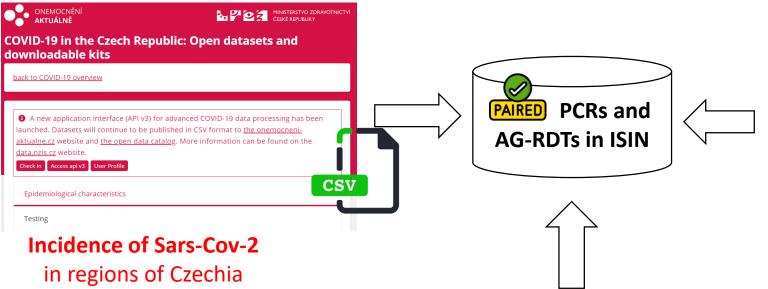
Glimpse of data

	Age			AG-	RDT	Days	PCR after AG-RDT	1 [Symp	toms	;					AG-	RDT v	's PCR	match
Datum výsledku	Věková		Kód testu	Název testu	Výrobce testu		Odstup PCR testu od AG testu	Typologi e testu	Kašel	Bolesti	Průjem/Z vracení	Teplota	Ztráta chuti, čichu	Jiné symptom Y	Očkování	Prodělan ý COVID	Hospitali zace	AG+ s násl. PCR+		AG- s násl	
1.12.2021	0-12	CZ010		*****	*****	2.den		2							0	0	0	0	0	0	2
1.12.2021	0-12	CZ010		*****	*****	nasledujici d	len	2							0	0	0	0	0	0	1
1.12.2021	0-12	CZ010		*****	*****	stejny den		1,5							0	0	0	1	1	0	1
1.12.2021	0-12	CZ010		#########	*****	stejny den		2							0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1232	Panbio Co	Abbott Ra	nasledujici d	len	1	0	0	0	0	0	1	0	0	0	1	0	0	0
1.12.2021	0-12	CZ010	1375	DIAQUICK	DIALAB Gr	2.den		1,5	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1437	Wondfo 2	Guangzho	nasledujici d	len	2	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1468	Flowflex S	ACON Lab	3.den		2	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1468	Flowflex S	ACON Lab	nasledujici d	len	1,5	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1468	Flowflex S	ACON Lab	stejny den		1,5	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1489	COVID-19	Safecare E	nasledujici d	len	1,5	0	1	0	1	0	0	0	0	0	1	0	0	0
1.12.2021	0-12	CZ010	1489	COVID-19	Safecare E	nasledujici d	len	2	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1608	ANTIGEN	A. Menari	stejny den		1,5	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1608	ANTIGEN	A. Menari	stejny den		2	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	1957	COVID-19	Zhuhai Lit	2.den		1,5	0	0	0	0	0	0	0	1	0	0	0	0	1
1.12.2021	0-12	CZ010	2099	VivaDiag F	VivaChek	2.den		1,5	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	2099	VivaDiag F	VivaChek	2.den		2	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ010	2099	VivaDiag F	VivaChek	nasledujici d	len	2	0	0	0	0	0	0	0	0	0	1	0	0	0
1.12.2021	0-12	CZ010	2099	VivaDiag F	VivaChek	stejny den		1,5	0	0	0	0	0	0	0	0	0	1	0	0	0
1.12.2021	0-12	CZ010	LepuAntig	Beijing Le	NULL	nasledujici d	len	1,5	0	0	0	0	0	0	0	0	0	0	0	0	2
1.12.2021	0-12	CZ010	LepuAntig	Beijing Le	NULL	nasledujici d	len	2	0	0	0	0	0	0	0	0	0	1	0	0	1
1.12.2021	0-12	CZ010	LepuAntig	Beijing Le	NULL	stejny den		1,5	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ020			*****	nasledujici d	len	1,5							0	0	0	1	0	0	1
1.12.2021	0-12	CZ020		*****	*****	nasledujici d	len	1,5							0	1	0	0	1	0	0
1.12.2021	0-12	CZ020	1223	BIOSYNEX	BIOSYNEX	2.den		1	1	1	0	1	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ020	1223	BIOSYNEX	BIOSYNEX	3.den		1	1	0	0	1	0	0	0	1	0	0	0	0	1
1.12.2021		CZ020	1232	Panbio Co	Abbott Ra	2.den		1	0	0	0	0	0	1	0	0	0	1	0	0	0
1.12.2021	0-12	CZ020	1232	Panbio Co	Abbott Ra	2.den		1	1	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ020	1232	Panbio Co	Abbott Ra	2.den		1,5	0	0	0	0	0	0	0	1	0	0	0	0	1
1.12.2021	0-12	CZ020	1232	Panbio Co	Abbott Ra	nasledujici d	len	2	0	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ020	1232	Panbio Co	Abbott Ra	nasledujici d	len	2	1	0	0	0	0	0	0	0	0	0	0	0	1
1.12.2021	0-12	CZ020	1331	SARS-CoV	Beijing Le	2.den		2	0	0	0	0	0	0	0	0	0	1	0	0	0

Overview of data - Delta

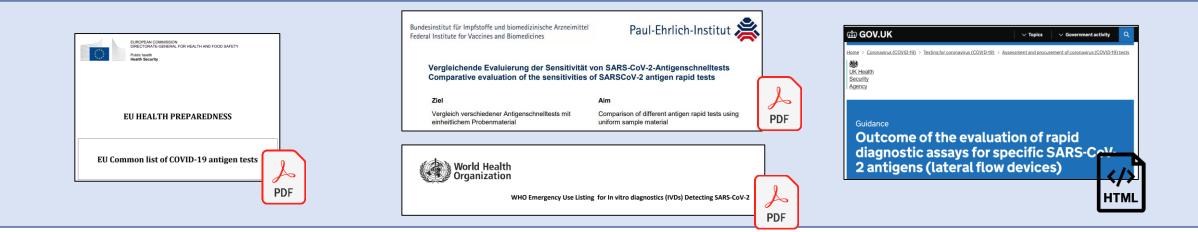
	Delta
Data collected from	5 August 2021
Data collected to	6 December 2021
AG-RDT types	~450
AG-RDT paired with positive PCRs.	346,221
True positives	49,618
False positives	9,111
False negatives	18,961
True negatives	268,531

Overview of data - Omicron vs Delta



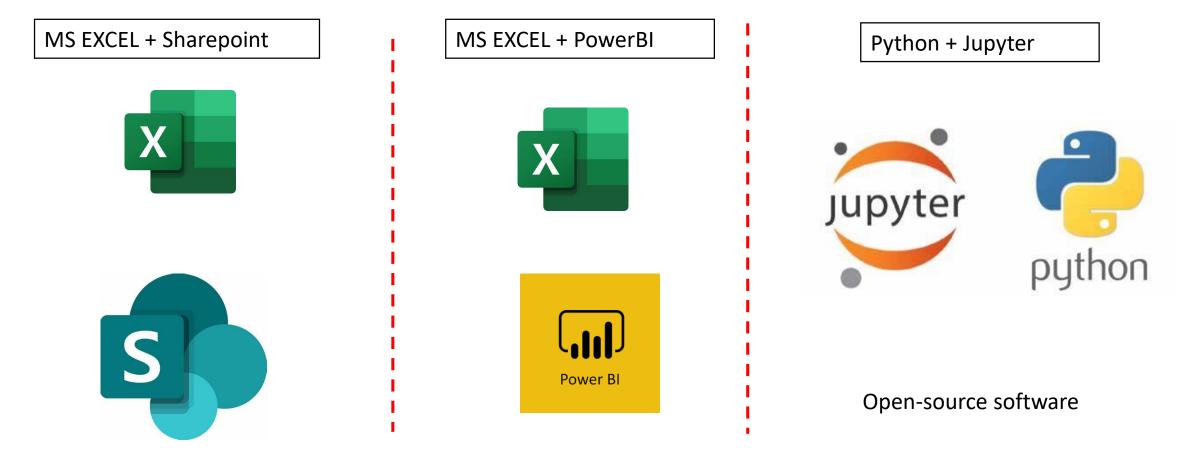
We will also include not yet published results for Omicron.

For these comparisons, we represent Delta with the last recorded month of Delta prevalence according to discriminatory PCR and Omicron with the first month of prevalence:


		Delta		Omicron
Data collecting from	Left out	1 Dec 21	Left out	20 Jan 22
Data collecting to		25 Dec 22		22 Feb 22
AG-RDT paired with positive PCRs		51,880		116,530
True positives	Possible other	14,027	There was a mix of variants according to discriminatory	42,383
False positives	factors affecting comparability with	1,973		5,330
False negatives	Omicron	4,000	PCR tests	15,306
True negatives		31,880		53,511

Enriching data with external information

Information on sample type for AG-RDTs



Lists of approved AG-RDTs

Data analysis

Three independent pipelines for different use cases

All allowing access for authenticated users via a web interface

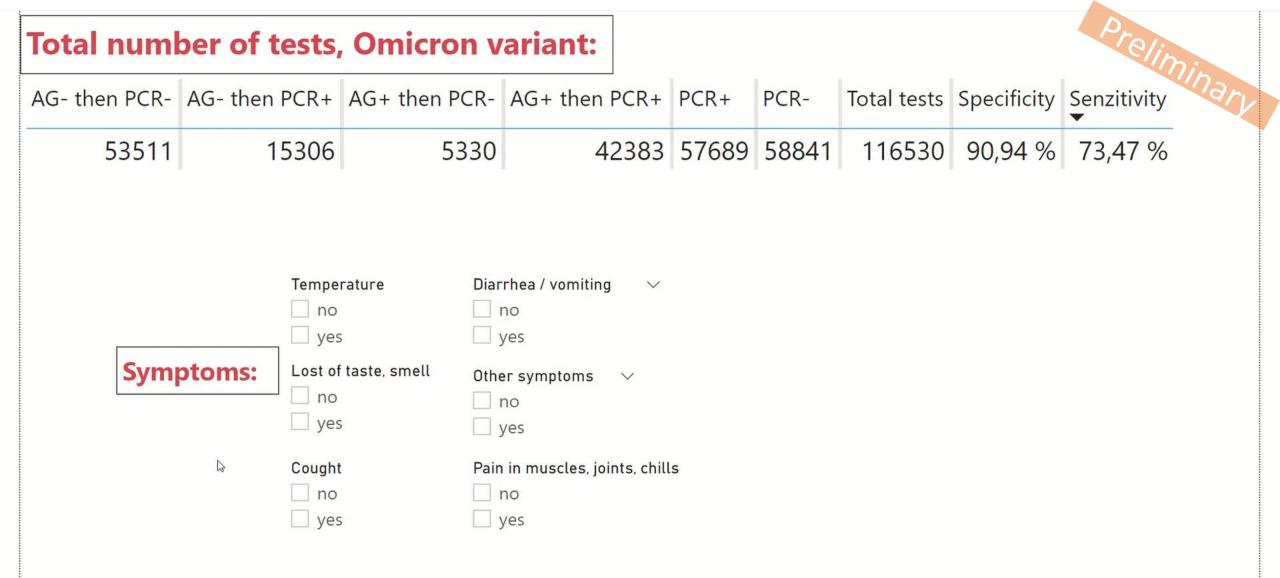
Overview of results

Results – 38 individual AG-RDTs

- Included were AG-RDTs with at least 300 PCR- and 100 PCR+ samples
- Results were in-line with several previously published studies
- The best performing AG-RDT from the list of 38 tests was the same test as determined in metastudy of Brümmer et al., 2021*
- We observed that the same test had below-average sensitivity as reported to have inconsistent performance in Denzler et al., 2022
- Please refer to our article for details (*Role of population and test characteristics in antigen-based SARS-CoV-2 diagnosis, Czechia, August to November 2021*. https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.33.2200070)

* In our study, nasopharyngeal version had the best results, in Brümmer et al. it was a nasal version of the same test.

Results (Delta) – overall


Number of days between AG-RDT and PCR	Total samples	PCR- positive cases	PCR test positivity in %	CI)	Specificity in % (95% CI)	PPV in %	NPV in %	
•		· · · ·	50 test types		71007	045	02.4	
0–3	346,221	68,579	19.8 (72.4 (72.0)	96.8) 96.8	84.5	93.4	
Composite s	subdatasets (n = 450)						
0	86,016	15,945	18.5	80.4 (79.8– 81.1)	96.0 (95.9– 96.2)	82.2	95.6	
1	140,265	31,421	22.4	80.1 (79.6– 80.5)	95.9 (95.8– 96.0)	84.9	94.3	Y
2	60,758	12,971	21.3	64.6 (63.8– 65.4)	97.3 (97.2– 97.5)	86.8	91.0	
3	59,182	8,242	13.9	39.6 (38.5– 40.6)	98.9 (98.8– 99.0)	85.2	91.0	Da

Average sensitivity for up to 3 days is most similar to the average sensitivity of **71.2%** (112,323 samples, 61 AG-RDTs) as determined by the metastudy of Brümmer et al, 2021

Same-day AG-RDT and PCRs have the highest sensitivity, which we attribute to higher viral load in persons taking AG-RDT and PCRs on the same day

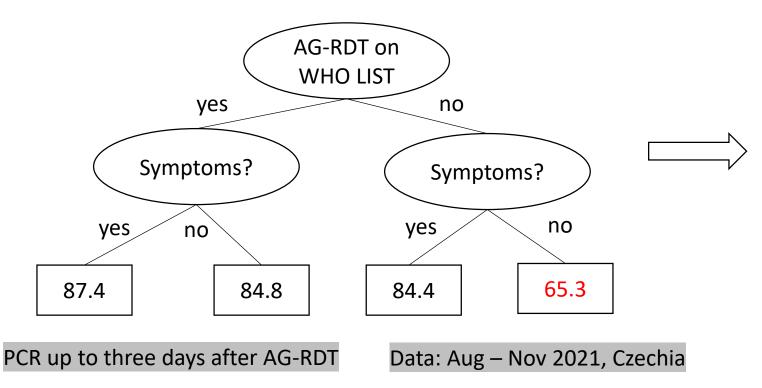
Data: Aug – Nov 2021, Czechia

Omicron vs Delta - software demo

Presence of AG-RDTs on approved lists

Results (Delta) – presence on approved lists

Group of AG RDTs (distinct tests)	Total samples	PCR-positive cases	PCR test positivity in %	Sensitivity in % (95% CI)	Specificity in % (95% Cl)
On WHO EUL 2020 (n = 2*)	27,528	7,053	25.6	<mark>80.2 (79.3–81.2)</mark>	97.0 (96.8–97.3)
On WHO EUL 2022 list (n = 3*)	34,353	9,002	26.2	81.3 (80.5–82.1)	96.7 (96.5–96.9)
On EU Common List (n = 20*)	144,979	30,848	21.3	<mark>74.4 (73.9–74.9)</mark>	97.2 (97.1–97.3)
On UK DHSC list (n = 7*)	45,739	10,362	22.7	74.2 (73.3–75.0)	97.1 (96.9–97.2)
On PEI list – passed sensitivity criteria (n = 20*)	190,833	36,464	19.1	<mark>69.1 (68.6–69.6)</mark>	97.3 (97.2–97.3)
On PEI List – passed and on EU Common List (n = 15*)	130,966	27,627	21.1	74.6 (74.1–75.1)	97.1 (97.0–97.2)
PCR up to three days afte	er AG-RDT			Data: Aug – N	ov 2021, Czechia


Higher sensitivity was observed for AG-RDTs on approved lists at least partly based on clinical studies

* Although only the most commonly used AG-RDTs in the studied period were included, the number of samples per individual AG-RDTs varies significantly.

Compare with dataset average sensitivity of 72.4% Results relate to the EU list **from 6 May 2022** (version with only one category of passing tests)

Results (Delta) – presence on lists and viral load

Reported symptoms are used as a proxy for higher viral load

Tests not on the WHO list had, on average, lower sensitivity on cases without reported symptoms (i.e. those with lower viral load).

Current version of the EU Common list of AG-RDTs

Category A: Clinical performance has been evaluated by (at least) one prospective clinical field study Category B: Evaluated by a retrospective in vitro study.

Studies had to meet the criteria and definitions as agreed by the Health Security Committee on 21 September 2021.

List	Delta	Omicron	Average EU Cat A list
	Sensitivity		sensitivities are comparable
WHO EUL, N=3* AG-RDTs	79.2 (77.7 to 80.8) N=2,205/2,783	75.7 (74.7 to 76.8) N=5,313/7,014	to WHO EUL, but the EU list contains more tests
EU Cat A N=28* AG-RDTs	79.5 (78.2 to 80.7) N=3,513/4,421	76.4 (75.6 to 77.2) N=9,109/11,925	AG-RDTs on the Category A part of the list
EU Cat B N=84* AG-RDTs	67.8 (65.9 to 69.6), N=1,754/2,588	65.0 (64.1 to 65.9), N=7,065/10,865	AG-RDTs on the Category B of the list
	Specificity		
WHO EUL	96.7 (96.2 to 97.1)	95.2 (94.8 to 95.2)	AG-RDTs on the Category A part of the list
Cat A	96.3 (95.9 to 96.7)	94.9 (94.5 to 95.2)	have significantly higher specificity than AG
Cat B	94.4 (93.8 to 95.0)	90.6 (90.0 to 91.1)	RDTs on the Category B of the list
PCR up to three day		1 Dec 21 – 25 Dec 22, on: 20 Jan 22 – 22 Feb	

* AG-RDT count includes all AG-RDT types with at least one PCR-paired sample in at least one of the two studied periods

EU Common list - 22 July 2022, WHO EUL – 7 June 2022

Preliminary

Field data as a complement to clinical studies in AG-RDT validation?

Criterion	Independent in-vitro study	Independent clinical study	Data registered as part of field Use of AG-RDTs and RT-PCR		
Used in approved lists	EU List Category B	EU List Category A	Not yet used?		
Independent	+++: typically done by large public bodies	++: may be paid for by manufacturer	+++: hundreds of testing sites with no connection to manufacturer		
Reflects variations between batches	+: one time evaluation	+: one time evaluation	+++: data continuously collected		
Keeps up with mutations	+: typically fixed pool/panel	++	+++: data continuously collected		
Evaluates sample type	-	+++	+ (+++): not collected in CZ (but could be)		
Evaluates subgroups (by age, symptoms)	-	+: limited due to sample size	+++: large sample, linkable to other patient data		
Sensitivity by viral load (Cq)	+++	+++	+ (+++): Cq values not collected (but could be)		
Unified methodology across evaluated AG-RDTs	+++	++: requirements on EQAP, etc, may vary.	+++: testing sites must conform to uniform state-wide requirements for both AG-RDT and PCR testing		
Large sample size +: at least 50 pooled specimen		++: at least 300 PCR-, 100 PCR+	++++: thousands of tests daily		
Costs	++	+	+++: no additional costs, only data processing		
Other disadvantages compared to clinical studies as gold standard	May not correspond to clinical results	GOLD STANDARD	Subsequent PCR neither done systematically for all AG- RDTs nor randomly (but could be done randomly)		

Results and conclusions for subpopulations testing

Presented by Dr. Helena Jiřincová National Reference Laboratory for Influenza and Respiratory Viruses, National Institute of Public Health, CZ

WHO recommends the use of Ag-RDTs that meet minimum performance requirements of \ge 80% sensitivity and \ge 97% specificity.

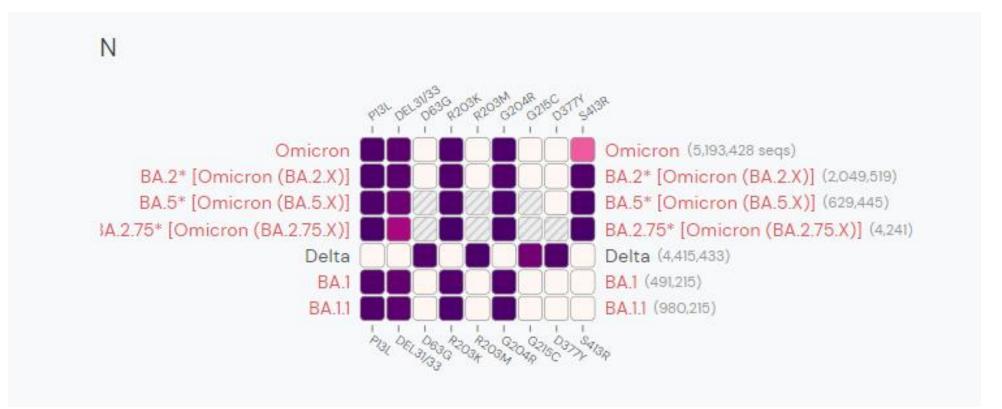
Antigen-detection in the diagnosis of SARS-CoV-2 infection

Interim guidance 6 October 2021

1st Conclusion of the study – AG RDT & children /adolescent field study

Sensitivity in children (0–12 years) and adolescents (13–18 years) was significantly lower than in adults (p < 0.05).

Group	Total samples	PCR-positive cases	PCR test positivity in %	Sensitivity in % (95% Cl)	Specificity in % (95% Cl)	PPV in %	NPV in %	
Age (years), n = 346,211								
0–12	44,896	5,489	12.2	<mark>65.5 (64.2–66.7)</mark>	97.0 (96.8–97.2)	75.2	95.3	
13–18	37,693	5,101	13.5	<mark>65.3 (64.0–66.6)</mark>	97.2 (97.0–97.4)	78.6	94.7	
19–25	37,126	6,153	16.6	<mark>71.0 (69.9–72.2)</mark>	97.0 (96.8–97.4)	82.6	94.4	
≥ 26	226,496	51,835	22.9	<mark>73.9 (73.5–74.3)</mark>	96.5 (96.4–96.6)	86.3	92.6	


Data: PCR up to three days after AG-RDT, Aug – Nov 2021, Czechia

- Sensitivity of AG RDT is the decisive factor in performance, especially in younger age groups
- The main criterion for field use (diagnostic, mass screening, etc.) should be performance, not cost

Our preliminary results for Omicron indicate *increased sensitivity of AG-RDTs in children, adolescents and young adults* compared to results for Delta. This is consistent with the observation of higher viral load in these populations for Omicron BA.2.2 (Ao et al., 2022)

N protein SNP DELTA x OMICRON

www.outbreak info

2nd Conclusion of the study - AG RDT versus incidence/indication

- The higher the incidence, the higher the sensitivity and the lower the specificity.
- Significantly higher sensitivity was obtained for the diagnostic indication typically symptomatic cases

Group	Total samples	PCR-positive cases	PCR test positivity in %	Sensitivity in % (95% Cl)	Specificity in % (95% Cl)	PPV in %	NPV in %		
SARS-CoV-2 incidence (new cases per 100,000 persons in the preceding 7 days), n = 346,221									
0–100	154,081	6,877	4.5	66.0 (64.8– 67.1)	98.3 (98.3– 98.4)	65.0	98.4		
100–500	83,114	18,682	22.5	68.8 (68.1– 69.4)	96.5 (96.4– 96.7)	85.2	91.4		
500–1,000	64,062	23,804	37.2	73.5 (72.9– 74.1)	93.9 (93.7– 94.2)	87.8	85.7		
1,000–1,727	44,964	19,216	42.7	76.7 (76.1– 77.3)	92.3 (91.9– 92.6)	88.1	84.1		
Indication, n = 34	43,062				•		•		
Diagnostic	45,039	22,423	49.8	86.1 (85.7– 86.6)	91.6 (91.2– 92.0)	91.1	87.0		
Epidemiological	71,442	12,279	17.2	63.6 (62.8– 64.5)	96.4 (96.3– 96.6)	78.8	92.7		
Preventive	226,581	311,61	13.8	63.6 (63.1– 64.2)	97.5 (97.4– 97.6)	80.3	94.4		

AG RDT test should be used in the context of mass testing only in periods higher than 500/100 000 and for symptomatic cases. Data: PCR up to three days after AG-RDT, Aug – Nov 2021, Czechia

3rd Conclusion of the study - AG RDT versus vaccination status

 Sensitivity levels for both vaccinated subgroups (symptomatic and asymptomatic) were also higher than for the corresponding unvaccinated subgroups (p < 0.05).

Group	Total samples	PCR-positive case	PCR test positivity in %	Sensitivity in % (95% Cl)	Specificity in % (95% CI)	PPV in %	NPV in %	
Vaccination status, n = 346,221								
Unvaccinated	235,795	42,985	18.2	70.8 (70.3–71.2)	96.9 (96.8–96.9)	83.4	93.7	
No symptoms	164,478	18,859	11.5	<u>55.8 (55 1–56.5)</u>	97.6 (97.5–97.7)	75.3	94.5	
At least one symptom	33,686	17,687	52.5	84.2 (83.7–84.8)	91.1 (90.6–91.5)	91.3	83.9	
Vaccinated	110,426	25,594	23.2	75.0 (74.5–75.5)	96.4 (96.3–96.5)	86.2	92.7	
No symptoms	65,223	9,746	14.9	<u>59.7 (58.8–60.7)</u>	97.5 (97.3–97.6)	80.5	93.2	
At least one symptom	27,223	11,982	44.0		2.9 (92.5–93.3)	90.4	89.1	
Data: PCR up to three days after AG-RDT, Aug – Nov 2021, Czechi								

• While the difference is statistically significant, its magnitude is low. The vaccination status thus does not influence the performance of AG RDTs.

Preliminary results for Omicron show the same pattern.

4th Conclusion of the study - AG RDT versus type of clinical material

 The sensitivity depends on the clinical material, the lowest is observed for saliva and the highest for nasopharyngeal (NSP) swabs according to both methods. Nasal swabs are less sensitive than NSP but better than saliva.

Group of AG- RDTs (distinct tests)	Total sample s	PCR- positive cases	PCR test positivity in %	Sensitivity in % (95% Cl)	Specificity in % (95% Cl)		
Sample type determined from test name (from all AG-RDT tests in the analysed dataset), n = 74 tests, n = 6,545 samples							
Saliva (n=36)	4,016	668	16.6	51.6	95.8		
Nasal (n=24)	2,349	651	27.7	73.9	97.1		
Nasopharyngeal (n=14)	180	70	38.9	84.3	89.1		
Data: PCR up to three days after AG-RDT,							

Aug – Nov 2021, Czechia

Group of AG- RDTs (distinct tests)	Total sample s	PCR- positive cases	PCR test positivity in %	Sensitivity in % (95% Cl)	Specificity in % (95% Cl)		
Sample type determined from the EU database for a subset of the most commonly used tests							
Saliva (1)	2,639	266	10.1	18.4	98.5		
Nasal swab (7)	35,313	5522	15.6	58.6	97.3		
Nasal swab, Nasopharyngeal swab (8)	67,751	16932	25.0	78.7	97.1		
Nasopharyngeal swab (5)	12,914	2596	20.1	79.7	97.8		

The type of clinical material can strongly influence the performance of AG RDT. Young children, in particular, refuse NSP; this is another reason for careful selection of the most sensitive AG RDT for preschool children screening.

Preliminary results for Omicron also indicate lower sensitivity of saliva AG-RDTs

Conclusion I – AG RDT and Public Heath recommendation

- AG RDT sensitivity is a decisive factor in performance, especially in
 - Testing children and adolescents
 - Preventive testing in collective facilities (e.g., homes for the elderly) and risk groups of the population
- Public health authorities cannot rely on the manufacturer's declaration of sensitivity and specificity
- An independent validation study must be conducted before the field study population
- According to the data, the WHO EUL list and Category A of the EU Common List should be considered the gold standard for the selection and recommendation of AG RDTs
- The main criterion for using a field study should be performance, not cost
- The public health authority should publish and regularly update the approved list of AG RDT

Conclusion II

- AG RDT test should only be used during periods of higher incidence
- AG RDT tests are reliable in testing symptomatic cases
- Vaccination status does not affect AG RDT performance
- Could using only approved Ag RDTs with good performance eliminate the need for confirmation of positive Ag RDTs by PCR testing?
 - Alleviate the strain on PCR testing in periods of high incidence and reduce costs
 - Assumes that the sample is taken by a medical professional as part of a statecontrolled network of testing sites

Public health opinion recommendation by NRL in November 2020 – January 2021

- Only AG RDTs recommended according to the latest update of WHO/ECDC.
- Self-sampling might be preferred in a school setting
- Saliva has a lower viral load (also supported by experience from PCR testing, better use test requiring nasopharyngeal samples)
- Prefer strategy for **high-throughput PCR test than AG RDT**, increase the level of digitalisation, prefer strategy for the PCR testing of local wastewater (WW)
- Exclude AG RDT with high false-positivity rate
- The list of reliable and Ministry of Health-approved AG RDTs should be presented, and only those tests should be used for field population study

References and acknowledgments

- Ao Y, Li J, Wei Z, Wang Z, Tian H, et al., 2022. Clinical and virological characteristics of SARS-CoV-2 Omicron BA. 2.2 variant outbreaks during April to May, 2022, Shanghai, China. *Journal of Infection*. Online ahead of print.
- Brümmer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med. 2021;18(8):e1003735.
- Denzler A, Jacobs ML, Witte V, Schnitzler P, Denkinger CM, Knop M. Rapid comparative evaluation of SARS-CoV-2 rapid point-of-care antigen tests. Infection. 2022;1-13.
- Kliegr T, Jarkovský J, Jiřincová H, Kuchař J, Karel T and Tachezy, 2022. Role of population and test characteristics in antigen-based SARS-CoV-2 diagnosis, Czechia, August to November 2021. Euro Surveill. 2022;27(33):2200070
- Scheiblauer H, Filomena A, Nitsche A, Puyskens A, Corman VM, Drosten C, et al. Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill. 2021;26(44):2100441

Preparation of this presentation supported by the EU under grant agreement No 857446 (HeartBIT_4.0)

Project "Enhancing Whole Genome Sequencing (WGS) and/or Reverse Transcription Polymerase Chain Reaction (RT-PCR) national infrastructures and capacities to respond to the Covid-19 pandemic in the European Union and European Economic Area" had received funding from the European Centre for Disease Prevention and Control under the Grant Agreement number ECDC/HERA/2021/004 ECD.12218.

More information about the project: <u>http://www.szu.cz/ecdc-1</u>

NOTE:

Information included reflects only the authors' view and the Centre (ECDC) is not responsible for any use that may be made of the information it contains.